Differentiation between Entamoeba histolytica and E. dispar using Enzyme-linked Immunosorbent Assay and Wet Mount Method

Mohammed A. Kadir¹, Ibrahim S. Daoud¹, Zaid Al-Bayati².
1- College of Medicine, University of Kirkuk, Kirkuk, Iraq.
2- College of Science, Tikrit University, Tikrit, Iraq

Abstract:
To differentiate between Entamoeba histolytica and E. dispar among patients attended Pediatric, General Hospital and Primary Health Care Centres in Kirkuk City, using Direct wet mount and ELISA techniques. The current study included the examination of (600) stool specimens of patients of different age groups (1≤60 years) attended Pediatric Hospital, Kirkuk General Hospital, and Primary Health Care Centers in Kirkuk city for the period from 1/8/2008 to 20/4/2009 to search for the prevalence of Entamoeba histolytica and Entamoeba dispar using ELISA. It was found that out of 600 stool specimens examined by wet mount microscopy 25.66 % were infected with E. histolytica / E. dispar. DRG ELISA based antigen detection kit of E. histolytica / E. dispar in stool specimens revealed that 52.12 % were found to be positive of total specimens examined (140 microscopy positive samples and 48 microscopy negative control samples). TechLab ELISA based antigen detection kit specific only for E. histolytica in stool specimens revealed that 6.38 % were positive for E. histolytica, while the remaining negative 93.62 % were considered E. dispar. DRG ELISA based antibody detection of anti-E. histolytica serum IgG revealed seropositivity rate of 36.17 %. The direct stool examination is not capable to differentiate between E. histolytica and E. dispar. TechLab ELISA based antigen detection of E. histolytica is a sensitive and rapid method for detection and differentiation of E. histolytica from E. dispar. DRG ELISA based antibody detection of anti-E. histolytica serum IgG is a helpful mean to detect chronic infection of amebic colitis, asymptomatic cyst carrier patients, and extra-intestinal infection...
Introduction

Entamoeba histolytica has been differentiated from E. dispar on the basis of genetic difference, both protozoa are morphologically identical but have genetic and functional differences, E. histolytica is invasive and causes disease such as colitis and liver abscess while E. dispar causes asymptomatic colonization which does not need to be medically treated (1). The diagnosis of amoebic colitis rests on the demonstration of E. histolytica in the stool or colonic mucosa of patients (2). The diagnosis of amoebiasis by microscopic identification of the parasite in stool is insensitive and unable to distinguish the invasive parasite E. histolytica from the commensal parasite E. dispar (3). Because microscopy is unable to distinguish between these two organisms, it should no longer be relied upon to diagnose amoebiasis. Sensitive and specific molecular techniques that are able to distinguish E. histolytica from E. dispar have been developed recently, these methods include the detection of an E. histolytica antigen using an enzyme-linked immunosorbent assay (ELISA), the use of the polymerase chain reaction (PCR) to amplify amoebic DNA, and the culture of stool samples followed by isoenzyme analysis (4). Several molecular diagnostic tests, including serological techniques that have been used so far for immunodiagnosis of amoebiasis, these includes indirect haemagglutination (IHA), counterimmuno-electrophoresis (CIE), amoebic gel diffusion test, complement fixation (CF), indirect fluorescence assay (IFA), latex agglutination, enzyme linked-immunosorbent assay (ELISA) (5). The study was planned to differentiate between E. histolytica and E. dispar using Enzyme-Linked Immunosorbent Assay (ELISA) in addition to the Conventional Method.

Materials and Methods

Study population

The study conducted from 1/8/2008 to 20/4/2009. Stool samples were collected from 600 patients of different age groups (≤1-60 years) who complain of diarrhea and/or abdominal discomfort attended the Pediatric and General Hospital and Primary Health Care Centers in Kirkuk city. Collection of stool samples. Stool samples were collected using a sterile wide mouth screw cap containers, fresh samples were examined by direct wet mount technique. Small amount (0.5 ml - 3 ml) of stool specimens were collected in sterile screw cap containers and kept at -20°C using (VestFrost-Denmark) refrigerator until being examined by ELISA. Microscopy positive samples were further examined by DRG ELISA based antigen detection of E. histolytica / E. dispar in stool specimens, positive DRG ELISA samples were further tested with TechLab E. histolytica II monoclonal ELISA based antigen detection in stool specimen, and 94 serum samples were examined by E. histolytica serum IgG ELISA. Collection of blood samples, Blood samples were collected from patients whom stool examinations were positive for the presence of E. histolytica / E. dispar trophozoites and/or
cysts and from control healthy persons using sterile syringes. The blood specimens then voided into a sterile screw cap serum tubes and allowed to coagulate then centrifuged for 3-5 minutes at 3000 rpm then serum were collected into sterile screw cap serum tubes and kept at -20°C until being examined by ELISA for *E. histolytica* serum IgG. Examination of stool specimens, Stool samples were examined by wet mount preparation using normal saline 0.9 %, buffered methylene blue, and lugol's iodine 1 % (6). The DRG ELISA stool antigen assay was performed on 140 microscopy positive stool specimens and 48 control stool specimens (microscopy negative for *E. histolytica*/ *E. dispar*) according to manufacturing company (DRG Instruments GmbH, Germany). The monoclonal ELISA for detecting *E. histolytica* adhesin in fecal specimen was performed on 94 stool specimens that were positive by DRG ELISA *E. histolytica* / *Entameoba dispar* stool antigen, according to manufacturing company (TECHLAB Inc., Blacksburg, Virginia, USA).

Results

Out of 600 stool specimens examined by microscopy (wet mount), *E. histolytica*/ *E. dispar* were found in 154 (25.66 %) patients. Table (1) shows that out of 188 stool samples including 140 samples positive by microscopic examination and 48 negative samples, it was found that 97 (69.29 %) samples out of 140 were positive by DRG ELISA and 43 (30.71 %) were negative, while only 1 (2.08 %) sample was positive for *E. histolytica*/ *E. dispar* in control samples. The overall rate positive DRG ELISA stool antigen among 188 stool samples was 98 (52.12 %). The DRG stool ELISA shows sensitivity of (69.28 %), specificity of (97.91 %) and predictive value of (97.80 %).

Table (1):- Detection of *E. histolytica* / *E. dispar* antigen in stool samples by DRG ELISA

<table>
<thead>
<tr>
<th>Examination Method</th>
<th>No. Samples</th>
<th>+ve %</th>
<th>-ve %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy positive samples tested by DRG ELISA</td>
<td>140</td>
<td>69.29%</td>
<td>30.71%</td>
</tr>
<tr>
<td>Control negative</td>
<td>48</td>
<td>2.09%</td>
<td>97.91%</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>52.12%</td>
<td>47.88%</td>
</tr>
</tbody>
</table>

Table (2) indicates that out of 94 stool samples that were positive for *E. histolytica*/ *E. dispar* by DRG ELISA, only 6 (6.38 %) were positive for *E. histolytica* while 88 (93.62 %) stool samples were negative and considered *E. dispar*.
Table (2): Detection of *E. histolytica* antigen in stool samples by TechLab ELISA technique.

<table>
<thead>
<tr>
<th>Examination method</th>
<th>No. samples</th>
<th>+ve</th>
<th>%</th>
<th>−ve</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TechLab ELISA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. histolytica II</td>
<td>94</td>
<td>6</td>
<td>6.38 %</td>
<td>88</td>
<td>93.62 %</td>
</tr>
</tbody>
</table>

Table (3) shows that serum IgG antibody against *E. histolytica* was detected in all 6 (100.0 %) serum samples of patients positive *E. histolytica* TechLab stool ELISA, and 24 (37.50 %) sera of patients positive *E. histolytica* / *E. dispar* DRG stool ELISA, while, only 4 (16.66 %) serum samples were positive out of 24 control samples, and 20 (83.34 %) were negative. The overall seropositive rate of serum IgG for *E. histolytica* among 94 samples was 34 (36.17 %).

Table (3): Serum IgG for *E. histolytica* among positive DRG ELISA, TechLab ELISA and control serum samples.

<table>
<thead>
<tr>
<th>Examination Method</th>
<th>No. samples</th>
<th>+ve</th>
<th>%</th>
<th>−ve</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum samples from DRG positive stool</td>
<td>64</td>
<td>24</td>
<td>37.50 %</td>
<td>40</td>
<td>62.50 %</td>
</tr>
<tr>
<td>Serum sample from TechLab positive Stool</td>
<td>6</td>
<td>6</td>
<td>100.0 %</td>
<td>0</td>
<td>0 %</td>
</tr>
<tr>
<td>Control samples microscopy negative</td>
<td>24</td>
<td>4</td>
<td>16.67 %</td>
<td>20</td>
<td>83.33 %</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>34</td>
<td>36.17 %</td>
<td>60</td>
<td>63.83 %</td>
</tr>
</tbody>
</table>

Table (4), indicates that the rate of positive stool samples for *E. histolytica* and *E. dispar* by microscopic examination was 25.66 %; in DRG ELISA stool antigen the positive rate was 52.12 % and negative 47.88%; in TechLab ELISA stool antigen positive rate for *E. histolytica* was 6.38 %, while negative was 93.62 %. In DRG ELISA serum IgG the positive rate was 36.17 %, while negative 63.83% respectively.
Table (4):- The positivity rates using different diagnostic methods for *E. histolytica*

<table>
<thead>
<tr>
<th>Examination method</th>
<th>No. Samples</th>
<th>+ve</th>
<th>+ve Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscopy wet mount</td>
<td>600</td>
<td>154</td>
<td>25.66%</td>
</tr>
<tr>
<td>DRG E. histolytica / E. dispar stool antigen</td>
<td>188</td>
<td>98</td>
<td>52.12%</td>
</tr>
<tr>
<td>TechLab E. histolytica II stool antigen</td>
<td>94</td>
<td>6</td>
<td>6.38%</td>
</tr>
<tr>
<td>DRG E. histolytica Serum IgG</td>
<td>94</td>
<td>34</td>
<td>36.17%</td>
</tr>
</tbody>
</table>

Discussion

*Percentage of *E. histolytica* / *E. dispar* in stool specimens examined by microscopy*

The rate of infection with *E. histolytica* / *E. dispar* were 25.66 % from total of 600 stool samples examined by wet mount, this result correlates with the study conducted by Shebib *et al.* (7) who recorded infection rate of 25 % of *E. histolytica* in children in Baghdad city. This result is also approach to that recorded by AL-Yassaree (8) who recorded infection rate of 29.5 % in Babylon city. This is also near to AL-Samarray (9) in Samara district, Salahaddin governorate, who recorded infection rate of 20.74%.

Antigen detection ELISA in stool specimens

The DRG ELISA *E. histolytica* / *E. dispar* kit recorded infection rate of 52.12 % (98 of 188). The result agreed with AL-Harthi and Jamjoom (10) in Saudi Arabia who recorded 59.6 % (112 of 156) infection rate for *E. histolytica* / *E. dispar* using Triage Parasite Panel. It was contrary with Delialioglu *et al.* (11) in Turkey who recorded 29.5 % (26 of 88) infection rate for *E. histolytica* / *E. dispar* using Ridascreen *Entamoeba* ELISA kit. The lower DRG ELISA detection compared to microscopy may be due to misdiagnosis results by microscopic examination resulting from confusing of polymorphonuclear leukocytes or macrophages with trophozoites and cysts of *E. histolytica*, or confusion with cysts of different species of Entameoba such as *E. hartmanni*, *Endolimax*. The lower detection rate by ELISA may be due to low density of trophozoites in stool specimen (12). The variation of ELISA results may be attributed to the fact that different ELISA kits were used from different companies, each differs in sensitivity, this difference may be attributed to the quantity of the parasites presented in stool or the presence of *E. moshkovskii* which is indistinguishable in its cyst and trophozoite from *E. histolytica* / *E. dispar*, which cannot be captured by the DRG ELISA kit. Regarding TechLab *E. histolytica II* ELISA kit, the recorded infection rate 6.38 % for *E. histolytica*, and 93.62 % for *E. dispar*. This result is in agreement with AL-Harthi and Jamjoom (10) in Saudi Arabia who recorded infection rate 4.3 % of *E. histolytica*, and 95.7 % for *E. dispar* using TechLab *E. histolytica II* ELISA kit, Kurt *et al.* (13) in Turkey...
reported higher infection rate 88.1 % for E. dispar compared to E. histolytica 8.5 % using TechLab E. histolytica II ELISA kit, while Mohammadi et al. (14) in Iran recorded 98.9 % for E. dispar, these 88 microscopy positive samples were submitted to TechLab ELISA and all were negative for E. histolytica. The result also closes to Haque et al. (15) in Bangladesh who recorded infection rate 4.29 % for E. histolytica using TechLab E. histolytica II ELISA kit. The high rate of E. dispar recorded in the current study may be due to the fact that E. dispar is the predominant Entamoeba. Of the vast number infected, the greater majority are infected with E. dispar, which explains, in part, the low percentage of disease symptoms in infected persons. It estimated that only 10 % of reported cases are due to E. histolytica. A study in Kilimanjaro / Tanzania, indicated that E. dispar infection was 14.4 time more prevalent than E. histolytica infection (18). In the current study the fewer patients included with bloody diarrhea, this may reflect the lower rate recorded for E. histolytica, in addition, the virulent strain of E. histolytica may differs according to geographical and environmental factors. The remaining majority reported with E. dispar which is a non pathogenic Entamoeba, complain of abdominal discomfort or diarrhea, this may be attributed to the association of E. dispar with other diarrheal causing agent (Rota virus, Shigella species, Campylobacter species enterohemorrhagic or enteroinvasive Escherichia coli, and Salmonella species) so the commonly reported complaints of diarrhea require alternative explanation. ELISA for E. histolytica fecal adhesins permits rapid detection and can be used for specimens submitted for routine clinical testing from adults or children. In addition ELISA test is highly sensitive, as little as 0.2 - 0.4 ng of parasitic antigen can be detected from stool samples (18). E. histolytica Serum IgG Antibody detection ELISA The serum IgG antibody against E. histolytica was detected in 36.17 % using DRG E. histolytica serum IgG ELISA . This result is close to Haque et al. (19) in Bangladesh who recorded 32.7 % (in a total of 232 children) seropositivity for E. histolytica serum IgG using TechLab ELISA, but was lower than Abd-Alla et al. (20) in Egypt who recorded 56.3 % seropositivity in patients with acute colitis using ELISA technique. The high anti-E. histolytica seropositivity rate may be due the persistence of IgG antibodies for years after infection, or due to the incomplete drug treatment, or the antibody was due to an extraintestinal infection (amoebic liver abscess or other sites), or individuals may be constantly reinfected throughout their lives, or continual exposure to the parasite or there may be no immunity or incomplete immunity to colonization with Entamoeb histolytica (11 and 19). E. dispar infection is not associated with the production of antibodies and this may reflect the noninvasive character of E. dispar, in contrast, one hundred percent of the patient infected with E. histolytica had serum antibodies (19). A possible explanation for these conflicting studies is that there may be restricted invasiveness of some strains
of *E. histolytica* and that these strains may consequently fail to elicit a circulating-antibody response. This may be reflected in the low incidence of invasive amoebiasis found in these communities. Also, since this study was a one-time sampling, the period of colonization with *E. histolytica* / *E. dispar* was not known. It is concluded that light microscopy is not capable of differentiating *E. histolytica* from *E. dispar*. The antigen detection ELISA tests for the *E. histolytica*-*E. dispar* complex is reliable and sensitive for the differentiation of *E. histolytica* from *E. dispar* in stool specimens. The rate of *E. histolytica* infection was lower than *E. dispar* using DRG ELISA.

Serological methods that detect anti-*E. histolytica* IgG antibodies can be used to distinguish between infection with *E. histolytica* and *E. dispar*. It is recommended to differentiate between *E. histolytica* and *E. dispar* with *E. histolytica*-specific antigen in stool samples and detection of anti *E. histolytica* IgM and IgG antibodies by serological methods.

References

